科技网

当前位置: 首页 >数码

三十秒告诉你金融机构应用AI的六大举措

数码
来源: 作者: 2019-04-10 10:20:39

【编者按】金融机构应该如何应用AI,EXL Analytics的副总裁Karan Bhalla在撰写的这篇文章中表示,机器学习可以针对特定的消费群体,搭配不同的金融产品,实现营收最大化;更好地预测信用卡持有者的违约行为,分析客户财务窘境的原因,和识别隐藏的讹诈行动;找到最容易成为客户的使用者;帮助管理者做实时决策;其他AI技术,比如语音辨认也能服务于多种场景,比如,呼叫中心防讹诈,帮助客户付款,贷款申请,智能投资申请等等。

本文发于“CU Insight”,作者Karan Bhalla;经亿欧编辑,供行业人士参考。

AI技术正对所有可以想见的业务功能造成惊人的冲击。

比如机器学习,它不仅能缩短工作时间,提高产品质量,增加收益,还能获得知识,解决复杂的问题,以及完美地阐述如何处理堆积如山的数据。

对数据只增不减,形态各异的金融服务行业来讲,机器学习更是业内救星——无论是营业网点的信息,还是呼叫中心的记录,分析这些数据,使其成为一套独立且具有高度认知的技术体系,从而洞悉行业未来走向。

金融机构应该如何应用AI,有以下举措。

1、在金融服务生态系统里,机器学习能够构建预测模型。通过这些模型,业内人士可以更好地看清情势作出正确的决策。机器学习的威力,在零售行业同样呼风唤雨,可以设计出不同产品的分类算法用以肯定货架上的物品,如何搭配销量最好,这类算法一样适用于金融产品——针对特定消费群体,配套各类产品,实现最大营收。

2、面向大型金融机构的客户,采取机器学习策略,可以更好地分类哪些信用卡持有者更容易违规或违约。这1举措能使该机构信用卡业务团队的预案有的放矢,发挥最大作用。无论是对消费者自身的长期财务状况,还是对信用卡业务的可持续性发展,都大有裨益。

3、将机器学习应用于实时网络流量数据,能够洞悉隐情,比如,找到那些容易成为客户的访问者,还可以依托现有数据,采用强化学习技术来做实时决策。

4、机器学习在其他方面,也有着巨大的潜能,比如信用卡发卡机构的成本绩效分析。基于机器学习模型的预测,信用卡团队可以放心肠变更信贷额度,在设定每个持卡人限额之前,充分了解不同场景下的本钱勤俭情况。

5、机器学习以及其他人工智能技术,比如语音识别,从呼唤中心防欺诈到全自动聊天机器人帮助客户付款,从贷款申请甚至到智能投资决策,能够服务于多种场景。

6、机器学习还可以用来分析触发财务窘境的缘由,深层的讹诈行动和可靠的信誉记录。掌握这些可能被疏忽的信息,金融机构负责人不但可以管控风险并增加收入,还可以为当今金融消费者提供其期望的特殊体验。

当然,机器学习不是万能的。通常,更传统的模型(如线性回归)能更好地匹配预期的结果,因此,需要与了解新兴技术利弊的伙伴合作。

全身性牛皮癣该怎么要进行治疗
治疗阳痿一定要分型对因
朔州最好的性病医院

相关推荐